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Inter-leg coordination is of great importance to guarantee the safety of the prostheses

wearers, especially for the subjects at high amputation levels. The mainstream of current

controllers for lower-limb prostheses is based on the next motion state estimation by

the past motion signals at the prosthetic side, which lacks immediate responses and

increases falling risks. A bio-inspired gait pattern generation architecture was proposed

to provide a possible solution to the bilateral coordination issue. The artificial movement

pattern generator (MPG) based on the temporal convolution network, fusing with the

motion intention decoded from the surface electromyography (sEMG) measured at the

impaired leg and the motion status from the kinematic modality of the prosthetic leg, can

predict four sub gait phases. Experiment results suggested that the gait phase decoder

exhibited a relatively high intra-subject consistency in the gait phase inference, adapted

to various walking speeds with mean decoding accuracy ranging from 89.27 to 91.16%

across subjects, and achieved an accuracy of 90.30% in estimating the gait phase of

the prosthetic leg in the hip disarticulation amputee at the self-selected pace. With the

proof of concept and the offline experiment results, the proposed architecture improves

the walking coordination with prostheses for the amputees at hip level amputation.

Keywords: gait phase, gait coordination, lower limb prosthesis, sensor fusion, sEMG, temporal convolution

network, detrended cross-correlation analysis (DCCA), hip disarticulation

1. INTRODUCTION

High-level amputation like hip disarticulation requires the utilization of an intelligent
prosthesis to restore the amputee’s natural gait. One way to achieve this goal is
to employ a phase-based controller (Tucker et al., 2015). Currently, the powered
prosthetic leg usually determines the gait phase merely according to its motion
parameters (Wang et al., 2013; Chen et al., 2015; Gao et al., 2019; Fluit et al., 2020).
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The lack of immediate contralateral information will lead to
coordination errors between the healthy leg and the prosthetic
leg and induce the irregular motor relearning process which
may cause the additional trajectory displacement of the body’s
center of gravity (Askew et al., 2019). As a consequence of
the increasing conscious efforts and physical workload, the
abnormal gait pattern may limit the wearer’s locomotion ability
and result in greater energy expenditure during plane walking.
Most important of all, the accumulated coordination errors
will induce a higher falling risk. Thus, it is necessary for the
intelligent prosthesis to determine the gait phase based on
bilateral information.

However, there are only limited researches that focus on
decoding the fused bilateral sensory feedback to predict the
rhythmic gait phase during cyclic bipedal walking. Echo control
is one implementation of such rhythm generator to replay
the joint motion trajectory of the sound leg at the prosthetic
side with an appropriate phase delay. With the contralateral
motion information as the reference input and the prosthetic leg
kinematic status as the real-time control feedback, it is easier to
achieve coordination response characteristics. An instance of a
gait phase decoder based on this echo paradigm can be found in
Wang et al. (2013), but this solution is indirect, as the motion
intention is estimated from the delayed motion. Besides, the
decoder’s dynamic performances are not fully estimated in case
the walking speed changes.

Essentially, human gait is the consequence of complex motor
activities under the high-level coordination between the trunk
and the lower limbs. Movement Pattern Generator (MPG) is
proposed by scientists to explain the emerging coordination
mechanism from the bottom up. One definition describes the
gait MPG as the neural circuits localized in the spinal cord with
the capability to produce a periodic rhythmic pattern during
walking (Dzeladini et al., 2017). A typical gait MPG architecture
involves the sensory feedback of gait state monitoring and the
information fusion mechanics to generate the movement to
accomplish certain gait tasks.

An artificial MPG architecture may offer a solution to
overcome the shortcomings of the current gait phase controller,
and it provides an inspiring insight in 2-folds. On the one hand,
MPG can fuse the sensory feedback of bilateral information at
the spinal cord level which provides a mid-level control strategy.
The amputee-prosthesis coupling system is a typical biological-
physical-cyber system, themotion intention can be decoded from
the physiological signals captured during the activity pattern
of human motors and it can be mapped to the gait sub-phase
with a specific physical meaning. The surface electromyography
(sEMG) is convenient to access (Xiong et al., 2021), provides
abundant neural command information (Farina et al., 2014), and
precedes the motion of the actuated limb (Jiang et al., 2012;
Copaci et al., 2018). These advantages make it a priority among
other biological modalities related to motion. Moon et al. (2019)
reported a faster detection of 27.1 ms on average when fusing
sEMG sensors to control the knee exoskeleton. Their design can
guarantee an immediate response when the gait speeds change
and meet the basic daily demands of the amputee. Besides, if
motion intention is decoded from the healthy leg of the amputee,

it may provide a better choice to overcome the shortcomings
of the poor signal quality when the sEMG was captured from
the residual limb (Fleming et al., 2021). Moreover, the sEMG
is especially suitable for monitoring muscle activity patterns
during walking, this can provide an additional benefit in the gait
restoration assessment at the same time.

On the other hand, an MPG helps to stabilize gait against
perturbations (Duysens and Forner-Cordero, 2018). This can
be critical to enhancing the gait coordination robustness under
the speed variation. Recently, with the multiple-domain success,
the neural network modeling approach has highlighted its
robust capability of approximately realizing any continuous
mapping, including both linear and nonlinear representation
(Funahashi, 1989). The mapping from sEMG to the gait
phase is of high nonlinearity, so neural networks become
the candidate to tackle the sEMG-based gait phase decoding
problem. Furthermore, deep learning techniques are introduced
to improve the performance of the artificial neural network.
Morbidoni et al. (2019) utilized a deep network with 2–5
hidden layers to solve the stance/swing phases classification
in natural walking scenarios and reported an average binary
classification accuracy of 94.9% for learned subjects and
93.4% for unlearned ones. The current existing deep learning
approaches are robust enough to overcome the weakness of
sEMG, thus, achieving higher accuracy. Additionally, a more
subtle granularity of gait phase recognition requires a more
sophisticated approach. Luo et al. (2020) designed an sEMG-
based real-time gait phase recognition system using a classifier
combining long-short term memory (LSTM) with multilayer
perceptron to make a four gait-phase-classification prediction.
Their experiment results of walking on flat terrain at 5 km/h
and 3 km/h achieved an average classification accuracy of 94.10
and 87.25%, respectively. It should be noted, LSTM introduces
the memory mechanism to enhance the network’s ability, which
allows the network to utilize both the current status and the
previous information. Since walking is a continuous process, the
relationship between different sub-phases is embedded within
the time-series order. Thus, the gait phase decoding can be
restated as a sequence modeling problem, and this makes
gait phase recognition different from the typical classification
tasks (where the order does not matter) when selecting the
neural network.

To sum up, in order to provide coordinated gait assistance, the
phase-based controller of the intelligent prosthetic leg should be
able to decode the gait phase not only according to its motion
parameters but also based on the physiological information
from the healthy legs. In this study, preliminary experiments
on six healthy volunteers and one hip disarticulation amputee
were conducted to explore the rationality of this bio-inspired
architecture. To be more specific, we first checked the availability
of the neural network approach to decode the gait phase from
fused modalities of the dominant leg during plane walking
under different speeds, and then tested the bilateral muscle
activities correlation as well as examining whether there was a
significant difference between decoding results using modalities
from the ipsilateral and the contralateral. Finally, we validated
the design philosophy with offline data obtained from one
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unilateral hip disarticulation amputee. The key contributions
of the present research are: 1) Provide a novel proof-in-
conception prosthesis myocontrol approach with a focus on hip
disarticulation amputees; 2) Investigate the performance of gait
phase decoder fusing bilateral neuromechanical signals.

2. METHODS

The function of the proposed gait phase decoder, as well as a
scene of the experiment, can be perceived in Figure 1. With
the ability to classify the time sequence, the decoder makes an
inference about the current gait phase state from four-gait-phase
categories based on bilateral sensory feedback. Furthermore, we
defined two metrics to evaluate the decoder’s performance. Later,
we described the experimental protocol and statistical techniques
in detail for the algorithm evaluation.

2.1. Algorithm Design
2.1.1. Preprocessing
Surface electromyography is the electrical potential captured in
the skin during the muscle fibers contract and relax. It can be
affected by multiple factors such as the relative displacement
between the electrode and the skin. To correctly interpret the
motion intention from the measurement, possible noises must be
removed. The sEMG signals from each walking trial were first
band-passed with a 20–450 Hz Butterworth band-pass filter to
eliminate the majority of the inherent device noise and motion
artifacts. The data was then filtered through a notch filter to
remove the electrical interference. In this proposed method,
both filtered sEMG and knee motion modalities were segmented
by a 64 ms sliding window with a half overlap increment.
The length of the sliding window was set to minimize the
user’s awareness of the time delay of the decoder dynamical
response and the classification accuracy loss for further online
validation. The EMG signal starts about 20–80 ms before the
muscle contraction (Copaci et al., 2018), The time that lapses
between the onset of electrical activity and a measurable change
in corresponding muscle tension is defined as electromechanical
delay (EMD) (Cavanagh and Komi, 1979). Figure 2 provides
an approximation in form of gray section masks. Due to
its existence, the contralateral sEMG measured at the same
time does not represent the corresponding motion of the
complementary limb, and thus, themeasurement mismatches the
simultaneous recorded ipsilateral kinematic signals. Therefore,
we manually set a phase advance shift during sEMG acquisition
to compensate for the EMD. In this experiment, the EMD value
for sEMG from knee extensor and flexor muscles was configured
as 80 ms (Vos et al., 1991).

2.1.2. Feature Extraction
We segmented the continuous trial data using a 100 ms sliding
window with a half overlap for a better processing simulation
which makes a performance tradeoff between the delay and
accuracy. Nine features including VAR (variance), STD (standard
deviation), RMS (root mean square), MAV (mean absolute
value), MAX (maximum), WL (wavelength), WA (Willison
amplitude), SSC (slope sign change), and iEMG (integrated

EMG) were extracted from the multiple-channel sEMG signals
of the dominant or unimpaired leg when sliding the window
(Details of these features can be found in the Appendix). Only
the mean values across the sliding windows were calculated
from the knee angle and angular velocity data considering time-
invariability stability during periodic walking. Then nine features
per muscle (four muscles in total) and one feature from each
kinematic signal (two kinematic signals in total) were fused in
parallel to an n × m dimension tensor, where feature dimension
n is equal to 38, and m indicated the sample points amounts of
each trial.

2.1.3. Labeling Four Gait Phases
In this offline mode, foot pressure captured by Zebris-FDM-T
System (Zebris Medical GmbH, DE) served as the ground truth.
Following the nomenclature of gait phases suggested in the article
(Taborri et al., 2016), the gait cycle was divided into four phases
(Figure 2): Heel Strike (HS), Flat Foot (FF), Toe Off (TO), and
Swing (SW). Then motion and sEMG tensors were annotated
with gait sub-phases labels.

2.1.4. Architecture of Gait Phase Decoder
Given that walking is a spatial-temporal process, the gait
information lies not only in each moment but also in the
successive relationship. Recurrent neural networks (RNN) are
the typical option in the time sequence decoding task, but a
new neural network framework called Temporal Convolution
Network (TCN) (Bai et al., 2018) was reported to outperform
canonical RNNs such as LSTMs. Therefore, we choose the TCN
as our decoder framework. Essentially, TCN is a 1D fully-
convolutional network with causal convolution layers: the causal
convolution represents the temporal causality, while the 1D
fully-convolutional architecture with zero padding guarantees
the output is of the same length as the input. Besides, modern
convolution network architecture techniques, including dilated
convolution and residual connections, are integrated to achieve
both very deep networks and a very long effective history.

In our implementation, the input parameters include the
ipsilateral knee angle and angular velocity, the contralateral
sEMG from four muscles. The input size is 38 which is equal
to the fusion feature set dimension. The output of TCN is
the current gait phase estimation out of the four categories.
We specified our network architecture with four residual
blocks. Within each block, the TCN had two layers of dilated
causal convolution. Each dilated causal convolutions layer had
two hidden sub layers, and the dilation factor d increased
exponentially with the depth of the network in a block (d =

1, 2, 4), the layer was constructed from 20 filters with the kernel
size k of 3. Other transformations were added in succession
after the basic dilated causal convolution, including weight
normalization (Weight Norm), rectified linear unit (ReLU), and
a spatial dropout. The inputs of the residual block were passed
through the two modified dilated causal convolutions, and the
outputs after these transformations were added to the inputs of
the block. An illustration of one residual block can be found
in Figure 1. All blocks were constructed in the same way and
connected serially. After passing through four residual blocks,
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FIGURE 1 | Overview of the data acquisition scenario and architecture of the gait phase decoder in the offline mode. The decoder fuses simultaneous sensory

feedback from the contralateral surface electromyography (sEMG) and the ipsilateral knee motion to generate an inference out of four-gait-phase categories which

include HS (heel strike), FF (flat feet), TO (toe off), and SW (swing). The foot pressure is utilized for the labeling process. Front and rear view of four thigh muscles

including Semitendinosus (ST), Rectus Femoris (RF), Vastus Medialis (VM), and Vastus Lateralis (VL) is inserted to exhibit the electrode placement. All the serially

connected residual blocks (ResBlock for short) share the same structure, thus, only one block is unfolded for illustration.

the results were connected to a full connection layer with zero
padding, and the softmax layer determines which candidates
need to be output.

2.1.5. Intra-Subject Learning Strategy for the Gait

Phase Classification Model
The TCN was implemented using MATLAB R2020a (The
Mathworks, USA) on Lenovo ThinkStation with an Intel Xeon
CPU processor E3-1225 V2 @ 3.2 GHz and 12 GB RAM, and
we adopted the training strategy similar to the study by Su et al.
(2020). However, another study (Nardo et al., 2020) suggested
that gait event detection by neural network interpretation of
intra-subject sEMG data can outperform typical inter-subject
approaches. So we did not pool the data for an inter-subject test
given that sEMG is highly personalized.

In the intra-subject training, we first trained the first 70%
of gait data and tested the last 30% of data for each speed
individually. Data was not randomized to maintain the historical
sequential information. This implementation was designed to
investigate whether the walking speed affects the decoding
accuracy of the ipsilateral gait phases and coordination of
the bilateral gait phases. Moreover, the change of the training
configuration simulated the decoder’s self-adaption process when
the speed varies. Cross entropy is selected as the loss function,

and to prevent overfitting, the classifier was trained for a
maximum of 30 epochs with a 0.05 dropout factor.

2.1.6. Post-processing
Post-processing is an offline analysis technique to provide a
more reliable gait phase recognition performance by eliminating
sporadic errors. During the model testing, we added the
procedure to the abnormal pulse. If the change of the gait phase
status cannot hold over a pre-defined width threshold, it can be
regarded as a false estimation. This procedure is introduced to
provide a smoother decoding result of gait phase transition.

2.1.7. Metrics
For long-period prosthesis control, bilateral gait coordination
relies on both decoding accuracy and decoding consistency.
The decoding accuracy is defined as the average decoding
correctness compared to the ground truth, and the decoding
consistency is referred to as the variation of the decoding
accuracy. The mean intra-subject classification accuracy of the
decoder was calculated by comparing the predictions on the held-
out test set with the true gait phase labels. Then the decoding
consistency was intuitively compared via interquartile range
(IQR) of across-speed classification accuracy of the decoder
fusing either ipsilateral or contralateral sEMG. A smaller IQR
indicated a better consistency.
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FIGURE 2 | An illustration explains how the coupled movement pattern generator (MPG) architecture produces the desired gait pattern. The schema above shows the

information flow between the prosthetic leg and the healthy leg, while a diagram below presents the bilateral knee angle curves and relevant muscles’ onset patterns

in one gait cycle. The interval between the dotted lines represents bilateral phase delay. The width of the gray rectangle stands for electromechanical delay (EMD).
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2.2. Experimental Protocol
Knee motion provides abundant information about the gait
phase, and the agonist and antagonist muscle groups are needed
to power the joint to accomplish the walking task. Experimental
evidence (Duysens and Forner-Cordero, 2018) suggests the
reflex-based gait control should take hip afferents as the proprio-
sensory feedback source considering its important role in loading
and unloading the limb as the control input, so four coherent
thigh superficial muscles were selected as the sensory feedback
sources in our architecture, including Semitendinosus (ST),
Rectus Femoris (RF), Vastus Medialis (VM), and Vastus Lateralis
(VL). Here, the channel choice with more emphasis on the
anterior is for the reason: a larger angular range of hip flexion
in the sagittal plane is spotted compared to the extension during
level walking, and the flexor muscles tend to stay active for a
longer period.

The skin areas of interest were cleaned with 70% alcohol
before data collection, and the gelled noninvasive Ag/AgCl
electrodes (bipolar and diameter of 4 mm) were used to
improve the contact of the electrode with the skin and obtain a
reliable measurement. Following the recommendation guidance
(Hermens et al., 2000), each sEMG electrode was attached to
the subject’s designated position with an interelectrode distance
of 2cm. The electrodes were placed in parallel to the direction
of the fibers to avoid the innervation zone of the muscles (Lu
et al., 2019). Neural commands (sEMG from the thigh of bilateral
legs in the healthy group or of the sound side in the amputee
case) and the current kinematic status of knee angle and angular
velocity signals from both legs were simultaneously recorded at a
sampling frequency of 1,500 Hz and collected by wireless sensors
through a Noraxon Direct Transmission System (DTS, Noraxon,
USA). The placement of the sensors were shown in Figure 1.

Six student volunteers as the HC (healthy control) group
enrolled in the experiments, and all the participants were self-
reported as right leg dominant according to their handwriting
habits. Besides, one unilateral HD (hip disarticulation) amputee
wearing our customized lower-limb prosthesis (Li et al., 2021)
enrolled in the experiments. A detailed description of all the
participants is provided in Table 1. The experiments were
approved by the local ethics committee and performed at
the Rehabilitation Engineering Laboratory at the University
of Shanghai for Science and Technology. All participants
provided written informed consent prior to any procedure of
the experiments. Before the experiments, subjects had enough
rest to avoid muscular fatigue. Since inter-limb coordination
during walking appears to be gait speed dependent (Bondi
et al., 2017), we investigated the reliability of the models under
different speed configurations. The healthy volunteers were
asked to walk on the treadmill at their self-selected speeds and
three different pre-defined speeds: slow (2.0 km/h), normal (2.5
km/h), and fast (3.0 km/h). Two trials were repeated for each
speed, and each trial lasted for 60 s. Between each trial, the
participants had at least 30 s rest time to relieve muscular
fatigue. The amputee followed a similar instruction except the
speed was only configured to his self-selected speeds (Table 1).
In particular, walking training was conducted before the
experiment started.

2.3. Statistical Analysis
The current paradigm in myoelectric control of robotic lower
limb prostheses only relies on EMG from the residual limbs,
a similar role of the non-dominant leg in the healthy control
group, the substitution of the contralateral sEMG remains to
be examined. Besides, no sEMG information can be obtained
from the amputation side in the hip disarticulation amputee
case, the correlation of the bilateral muscle activities can be only
explored in the healthy control group. Therefore, we conducted
the correlation analysis over the healthy to validate the design
rationality of the algorithm fusing the bilateral information and
performed the t-test to check whether the decoding results
obtained from the bilateral information exhibit a significant
difference from the ipsilateral.

Detrended cross-correlation analysis (DCCA) was applied
to analyze bilateral sEMG channels because it is suitable
for analyzing non-stationary time series with periodic trends
(Podobnik and Stanley, 2008; Wang and Zhao, 2012). DCCA is
a modification of standard covariance analysis where the global
average is replaced by local trends, and its performance has been
systematically tested for the effect of nonstationarities (Podobnik
and Stanley, 2008; Prass and Pumi, 2021). The bilateral sEMG
cross-correlation can be characterized as the FDCCA(n) index
which is calculated in the following formula:

ρDCCA

(
α,α′,T, n

)
=

F2DCCA(n)

FDFA(n)F
′
DFA(n)

(1)

where the DFA denotes the Detrended Fluctuation Analysis
which calculates the power-law auto-correlation of the ipsilateral
sEMG signal, and FDCCA(n) and FDFA(n) can be defined as
the following:

FDCCA(n) ≡

√√√√ 1

N − n

N−n∑

i=1

f 2DCCA(n, i) (2)

FDFA(n) ≡

√√√√ 1

N − n

N−n∑

i=1

f 2DFA(n, i) (3)

where fDCCA(n,i) are defined as:

fDCCA(n, i) ≡ 1/(n− 1)

i+n∑

k=i

(
Rk − R̃k,i

) (
Lk − L̃k,i

)
(4)

where the Rk and Lk are the bilateral sEMG signals, and the
fDFA(n,i) replaces the Rk and Lk of the ipsilateral leg in Equation 4.

In our study, R was employed to implement the DCCA.
Referring to the empirical value suggested in Podobnik et al.
(2011), the cross-correlations of bilateral muscle channels are
considered significant if the index FDCCA(n) is larger than 0.185
for the 95% confidence level.

In the session of decoding accuracy analysis, a normality test
was performed in the dataset with the outliers deleted by the
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TABLE 1 | Personal information of participants.

Participant ID Sex (m/f) Age (year) Height (m) Weight (kg) Self-selected speed (km/h) Dominant/Unimpaired lateral (L/R)

HC-1 f 24 1.70 48 2.80 R

HC-2 f 24 1.57 50 2.70 R

HC-3 f 27 1.68 55 2.90 R

HC-4 f 22 1.55 53 2.50 R

HC-5 m 23 1.70 65 2.50 R

HC-6 m 23 1.72 72 1.80 R

HD m 32 1.75 60 1.80 L

quartile detection (threshold at 1.5). The level of significance
for all statistical analyses was accepted at p < 0.05 unless
otherwise stated. P-values between 0.05 and 0.10 were considered
to indicate a statistical trend.

3. RESULTS

3.1. Gait Phase Decoding Performance
Assessment
The overall assessments of the decoder’s ability to extract
information from the ipsilateral fusion sensors using multiple-
subject testing results were shown in Figure 3A. The most
prominent change in the sample floating range depicted in IQR
was observed at the fast speed (3.0 km/h), whereas the slow
speed (2.0 km/h) remains the most stable. The measure of central
tendency indicated by the medium achieved the best result
(90.41%) at the normal speed (2.5 km/h). A 95% confidence
interval (CI) of mean decoding accuracy was computed for each
speed. The mean value at 3.0 km/h reaches the highest accuracy
(91.16%), while it reaches the lowest (89.27%) at the slow speed
(2.0 km/h). To check for the design rationale of fusing the
contralateral sensory feedback, the result is shown in Figure 3B,
where sEMG from the ipsilateral is treated as the control group.
The t-test indicates that the gait phase decoding result exhibits
no difference when we substituted the ipsilateral sEMG sensors
for the contralateral as the fusion information source. Both the
floating range of the decoding results and the mean value of
gait phase recognition are similar. Additionally, the p-value (P
= 0.98) supports the decoder’s ability to handle the bilateral
sensory feedback.

However, the pattern of muscular activities varies from person
to person, the overall assessment is not complete to assess the
decoder’s performance, hence, we further checked the intra-
subject decoding accuracy and consistency. To estimate the
detailed effects of speed variability on the decoder’s performance
fusing ipsilateral sensors, the radar chart in Figure 4 was used
to compare the overall accuracy as well as the sub gait phase
recognition results across three predefined speeds for six healthy
subjects, respectively. A greater covering area indicates either
a higher accuracy or a more consistent decoding performance
across different gait sub phases. The speed effect on the decoder
varies from person to person. The HC-1, HC-3, and HC-
6 reported the best decoding results as the curve covers the
maximum area across speeds. Generally speaking, the maximum

inference error mainly occurs at the pre-swing transition phase
(TO), and the normal speed seems to be the least affected one.
Speed adaptability should be considered when evaluating the
decoding consistency, thus, we further mixed the multiple speed
results for the same person. The central tendency described by
IQR in Figure 5 indicates that the gait decoder can improve the
decoding accuracy consistency for most participants when we
changed the ipsilateral to the contralateral sEMG signal.

3.2. Cross-Correlation Analysis of Bilateral
Muscle Activities
The results of DCCA for bilateral sEMG are presented in
Figure 6. The power-law auto-correlation in DFA for sEMG of
bilateral legs serves as the reference value for the DCCA. The
DFA reference values for bilateral legs are almost identical across
speeds and achieve the best consistency across muscles at the
speed of 2.0 km/h. Among the three speed configurations, the
cross-correlation of bilateral muscle activities is at a minimum
gap distance from the referenced auto-correlation value at the
normal speed (2.5 km/h) for all themuscle channels. The distance
gap from the reference value can be quantified by the FDCCA(n)
index, which has a physical meaning of muscle contribution
in our case, varies across channels across walking speeds.
Combining the DCCA index table, all channels are significantly
cross-correlated, and bilateral VM-VM and VL-VL exhibit the
highest relevance, then followed by RF-RF and ST-ST pairs.

3.3. Validation in Amputee Gait Phase
Estimation
As walking speed is a prominent factor in gait pattern generation,
we chose the record of Subject HC-6 for further comparison
since his self-selected speed is the same as the HD’s (Table 1).
Figure 7A compares the angles of knee flexion and extension
between the hip disarticulation amputee and one healthy subject.
Generally speaking, the amplitude and the sub gait phase
duration of sound-side knee angle for the amputee is very similar
to the healthy, whereas the angle amplitude of the prosthetic
side is much smaller and the stance phase tends to last longer.
The confusion matrix in Figure 7B compares the gait phase
decoding results between the two groups. At the self-selected
speed, though the overall gait phase decoding accuracy shows a
significant difference (P = 0.0036) between groups, both groups
reported a high accuracy (90.30% for the amputee and 93.00% for
the subject HC-6). In both cases, the errors mainly occur during
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FIGURE 3 | Overall evaluation of the gait phase decoder performance across the healthy subjects. (A) Shows the decoding accuracy under three predefined speeds.

(B) Compares the decoding accuracy fusing sEMG sensor feedback from different legs.

the continuous transition of the gait phase. Besides, there is a
greater probability for the decoder to make the wrong estimation
about the gait phase of the prosthetic side during the stance phase
compared to the healthy control group.

4. DISCUSSION

4.1. Biological Implications for Movement
Pattern Generation
One hypothesis about the architecture of MPG involves a Central
Pattern Generator (CPG) and a neural reflex loop (Dzeladini
et al., 2017). The CPG functions as the endogenous oscillator
to generate the gait pattern with appropriate phase delays
(Figure 2), and the reflex loop perceives the state of the body
in a certain environment from the sensory feedback. In our
architecture, the TCN can model the gait phase delays in a black-
box paradigm. As a result, by continuously fusing the bilateral
information, it can model the merged behaviors of the CPG and
the reflex loop.

The formation of MPG can be considered as entrainment
of the cyclic motion of bilateral legs with response to
internal motion intention commands and adaptation to external
environment disturbance. Furthermore, the coupling process
modeled by our architecture can be interpreted as intra-system
communication and inter-systems communication (Dzeladini
et al., 2017). The former guarantees gait coordination during
the pace transition, while the latter guarantees a high efficiency
human-to-robot interaction. This makes it especially suitable for
enhancing the safety in the complex amputee-prosthesis-system
since the gait coordination errors are the compounding results of
time-lag response in gait pattern transition as well as a deficiency
of the communication inefficiency between the biological system
and the physical system. Besides, by utilizing the physiological
sensory feedback to decode the motion intention of the amputee
subsystem, the decoder provides voluntary control over the

contralateral artificial leg and allows for a faster response to
achieve inter-leg coordination.

4.2. Explanation of Speed Effects on
Decoding Accuracy
Gait phase decoding accuracy is the first step toward inter-leg
coordination. Overall performance of the decoder was consistent
across speeds for most subjects (Figure 7), this implies that
the gait phase decoder was robust to the change of the gait
speeds, and this property corresponds to the MPG’s robustness
to perturbations during walking. Additionally, the variation of
speeds mainly takes effect at the transition between the swing
and stance phase, this may be the misinterpretation of sensory
feedback when the decoder fuses the contralateral sEMG to make
a judgment. At different speeds, one possible reason for the
difference in contribution index (Figure 6) is that the muscle
activities tend to last longer and the recruitment amount of
muscle fibers is larger at a slower speed, so the nonlinearity occurs
with a higher probability, and this leads to the loss of accuracy.
However, this may no longer hold true taking into account the
slower self-selected pace. In these cases, muscles contract with
regularity to minimize the energy cost.

When comparing the same speed between the healthy control
group and the amputee, a decoding accuracy loss was spotted
in the amputee’s case. The decoder makes the maximum errors
when it infers the amputee’s gait phase at the TO and mistakes it
as the FF. This can be partly explained as the knee joint trajectory
of the prosthetic leg shows a smaller amplitude compared to the
healthy leg (Figure 7A). The smaller displacement indicates a
more stiff status of the prosthetic leg, and thus, the sub gait phases
are not so distinctive. The walking habit may partly account
for it. Considering that the amputee may still not get used to
the prosthetic leg even after a period of walking training before
the start of the experiment, the neural system may generate an
irregular motor pattern to prevent fall risks, and thus, the level
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FIGURE 4 | Comparison of the gait phase decoder across three predefined speeds for the six healthy subjects. Both the overall performance and the sub gait phase

decoding accuracy are in the same radar chart as different axes.

of muscle activities tends to be stronger (Yang et al., 2007) to
coordinate the sound side, as a consequence, a great exposure
chance for sEMG exhibiting the time-variant property can result
in the decline of recognition accuracy.

Although our architecture has followed the sensor fusion
suggestion in literature (Hamzaid et al., 2020), and the statistical
analysis results (Figures 3B, 6) indicated a high bilateral
correlation and spotted no significant decoding difference when
the modality choice changed, the time-variant sEMG can
still confuse the decoder from time to time; this calls for
the further investigation in improving the motion intention
estimation accuracy.

4.3. Comparison to the Previous Studies
The proposed architecture shares similar inspiration from nature
with the artificial CPG implemented widely in the legged robots
(Ryu et al., 2009; Akkawutvanich et al., 2020; Tanikawa et al.,
2021), but the latter only provides the trajectory control solution,
while our design can provide a wider choice for the low-level
controller with additional control hierarchy adding in. Echo
control is a similar implementation in the field of lower-limb
prosthesis control, however, it is still based on the trajectory
control paradigm. A gait phase decoder based on echo control
can be found in Wang et al. (2013), but it lacks the perception of

the human motion intention from the internal sensory feedback
which is critical in the human-centered design.

Limited research has investigated the utilization of bilateral
modalities which contain meaningful interlimb coordination
information, such as the gait phase delay across the legs,
not to mention fusing the contralateral neural information to
additionally extract the motion intention. The decoding accuracy
exhibits no difference when we replaced the ipsilateral sEMG
with the contralateral sEMG (Figure 3B) with a p-value indicator
of 0.98, this supports the complementary myocontrol rationale
with respect to myocontrol from the residual limb (Fleming et al.,
2021). Moreover, as indicated in Hu’s research (Hu et al., 2018),
bilateral sensors fusion can reduce steady-state and transitional
error rates in locomotion recognition. The distinction may be a
result of bilateral sensor amounts used in a different recognition
task. Incorporating signals from both legs also allows the gait
phase decoder to make a decision with interlimb coordination
information. The deviation of the bilateral decoding results
in Figure 5 indicates a distinctive reduction of the fluctuation
compared to the unilateral in most cases. A potential explanation
is that fusing the bilateral gait phase will reduce temporal
uncertainty in the decoder’s inference. Upcoming gait phase
estimation is relevant to not only the current ipsilateral gait
phase but also the gait phase of the contralateral leg. Missing
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FIGURE 5 | Examination of the decoder’s speed adaptability when coordination information was introduced. The decoding accuracy with a fusion dataset containing

the contralateral or ipsilateral sEMG is compared within the same person. The central trending indicates the decoder’s consistency across speeds.

the contralateral gait information may lead to a "blind" inference
which further causes an inappropriate dynamic response while
increasing the risk of falling. Besides, by incorporating the
contralateral sEMG, an internal lower-limb motion status of the
participant can be obtained to constrain the decoder’s inference
to improve the decoding consistency. This improved decoding
reliability is critical for the design of the control system of the
lower-limb walking assistance devices for safety.

4.4. Potential Applications and Future
Developments
The proposed decoder is intended for the prosthetic leg design
with an emphasis on hip disarticulation. Its application is
illustrated in Figure 1 where the decoder serves as a high-
level control input. By mapping the control constraints into the
sub-gait phase, a finite-state-machine-like control schema can
be adopted. Generally speaking, there should be a more strict
control constrain of the prosthetic leg during the bodyweight
supporting phase for safety considerations, especially in complex
locomotion environments. The proposed decoder shows the
promise of a smoother transition during the stance phase. With
a further improvement in accuracy, the proposed decoder can
be adopted in other walking assistive devices design, such as
lower-limb exoskeletons and prostheses.

As indicated in Englehart and Hudgins (2003), a control
system must respond within 300 ms so that the user will

not perceive the delay, and for the control system design in
the lower-limb application, this threshold should be smaller
to guarantee the safety of the user. Offline evaluation of this
decoder shows the total time per step is about 2 ms using
a 64-ms time window on the aforementioned hardware. For
an embedded control system, the computation time should be
further reduced with model optimization. Another limitation
of this study is that we only consider the subdivision of
the stance phase. The swing phase with a finer granularity
should be further considered in the prosthetic leg control
system design.

5. CONCLUSION

In this study, we have addressed the gait phase decoding
problem inspired by the hypothesized MPG architecture to
achieve gait coordination in the amputee-prosthesis coupling
system. TCN has been employed to model the behaviors of
gait pattern generator across different speeds, and sensory
feedback from bilateral legs has been fed into the TCN
where the sEMG has been utilized to estimate the human’s
motion intention. The decoder has exhibited a high intra-
subject consistency in the gait phase inference, adapted to
various paces with a tolerant decoding accuracy loss, and it
has achieved a high accuracy in sub phase estimation of the
prosthetic leg in the hip disarticulation amputee wearing our

Frontiers in Neurorobotics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 791169

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Chen et al. Bio-Inspired Gait Phase Recognition

FIGURE 6 | Detrended cross-correlation analysis (DCCA) results across three predefined speeds. The table above describes four muscle channels and assessment of

the muscle activities contribution, and the panel below shows the cross-correlation analysis results for corresponding muscle pairs.

customized prosthesis. These results have suggested a possible
improvement in walking coordination with an intelligent
prosthesis for the amputees at hip level amputation. Further

study will integrate the gait phase decoder in the control
schema of the intelligent prosthesis and validate it in the
online mode.
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FIGURE 7 | Comparison of the knee angle and the decoder’s performance between HC (Healthy Controls) and HD (Hip Disarticulation) groups. (A) Compares the

dominant knee angle of HC and the bilateral knee angle of HD, and (B) compares the decoder’s performance in the confusion matrix.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Local Ethics Committee at Rehabilitation
Engineering Laboratory in the University of Shanghai for Science
and Technology. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

YC, XL, and HY conceptualized and designed the study. YC
measured and analyzed the participant’s data in consultation

with XL. YC drafted the manuscript. XL, HS, and DZ
revised the article critically for important intellectual content.
All authors contributed to the article and approved the
submitted version.

FUNDING

This study was supported by a grant from the National
Key Research and Development Program of China (no.
2018YFB1307301).

ACKNOWLEDGMENTS

We would like to thank the volunteers for their participation in
the experiments.

Frontiers in Neurorobotics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 791169

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Chen et al. Bio-Inspired Gait Phase Recognition

REFERENCES

Akkawutvanich, C., Knudsen, F. I., Riis, A. F., Larsen, J. C., and Manoonpong,

P. (2020). Adaptive parallel reflex- and decoupled CPG-based control

for complex bipedal locomotion. Rob. Auton. Syst. 134, 103663.

doi: 10.1016/j.robot.2020.103663

Askew, G. N., McFarlane, L. A., Minetti, A. E., and Buckley, J. G. (2019). Energy

cost of ambulation in trans-tibial amputees using a dynamic-response foot with

hydraulic versus rigid ‘ankle’: insights from body centre of mass dynamics. J.

Neuroeng. Rehabil. 16, 39. doi: 10.1186/s12984-019-0508-x

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of

generic convolutional and recurrent networks for sequence modeling. CoRR,

abs/1803.01271.

Bondi, M., Zeilig, G., Bloch, A., Fasano, A., and Plotnik, M. (2017). Split-arm

swinging: the effect of arm swinging manipulation on interlimb coordination

during walking. J. Neurophysiol. 118, 1021–1033. doi: 10.1152/jn.00130.

2017

Cavanagh, P. R., and Komi, P. V. (1979). Electromechanical delay in

human skeletal muscle under concentric and eccentric contractions.

Eur. J. Appl. Physiol. Occup. Physiol. 42, 159–163. doi: 10.1007/BF004

31022

Chen, G., Liu, Z., Chen, L., and Yang, P. (2015). “Control of powered knee

joint prosthesis based on finite-state machine,” in Proceedings of the 2015

Chinese Intelligent Automation Conference (Berlin; Heidelberg: Springer),

395–403.

Copaci, D., Serrano, D., Moreno, L., and Blanco, D. (2018). A high-level control

algorithm based on sEMG signalling for an elbow joint SMA exoskeleton.

Sensors 18, 2522. doi: 10.3390/s18082522

Duysens, J., and Forner-Cordero, A. (2018). Walking with perturbations: a

guide for biped humans and robots. Bioinspir. Biomimet. 13, 061001.

doi: 10.1088/1748-3190/aada54

Dzeladini, F., Ait-Bouziad, N., and Ijspeert, A. (2017). “CPG-based control of

humanoid robot locomotion,” in Humanoid Robotics: A Reference (Dordrecht:

Springer Netherlands), 1–35.

Englehart, K., and Hudgins, B. (2003). A robust, real-time control scheme for

multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50, 848–854.

doi: 10.1109/TBME.2003.813539

Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H.,

et al. (2014). The extraction of neural information from the surface

EMG for the control of upper-limb prostheses: emerging avenues

and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 797–809.

doi: 10.1109/TNSRE.2014.2305111

Fleming, A., Stafford, N., Huang, S., Hu, X., Ferris, D. P., and Huang, H.

H. (2021). Myoelectric control of robotic lower limb prostheses: a review

of electromyography interfaces, control paradigms, challenges and future

directions. J. Neural Eng. 18, 041004. doi: 10.1088/1741-2552/ac1176

Fluit, R., Prinsen, E. C., Wang, S., and van der Kooij, H. (2020). A comparison

of control strategies in commercial and research knee prostheses. IEEE Trans.

Biomed. Eng. 67, 277–290. doi: 10.1109/TBME.2019.2912466

Funahashi, K. I. (1989). On the approximate realization of continuous mappings

by neural networks. Neural Netw. 2, 183–192. doi: 10.1016/0893-6080(89)

90003-8

Gao, F., Liu, Y., and Liao, W.-H. (2019). Implementation and testing of ankle-foot

prosthesis with a new compensated controller. IEEE/ASME Trans. Mechatron.

24, 1775–1784. doi: 10.1109/TMECH.2019.2928892

Hamzaid, N. A., Yusof, N. H. M., and Jasni, F. (2020). Sensory systems in micro-

processor controlled prosthetic leg: a review. IEEE Sens. J. 20, 4544–4554.

doi: 10.1109/JSEN.2019.2944653

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., and Rau, G. (2000).

Development of recommendations for SEMG sensors and sensor placement

procedures. J. Electromyogr. Kinesiol. 10, 361–374. doi: 10.1016/S1050-6411(00)

00027-4

Hu, B., Rouse, E., and Hargrove, L. (2018). Fusion of bilateral lower-limb

neuromechanical signals improves prediction of locomotor activities. Front.

Rob. AI 5, 78. doi: 10.3389/frobt.2018.00078

Jiang, N., Dosen, S., Muller, K.-R., and Farina, D. (2012). Myoelectric

control of artificial limbs-is there a need to change focus? [in the

spotlight]. IEEE Signal Process. Mag. 29, 152–150. doi: 10.1109/MSP.2012.

2203480

Li, X., Deng, Z., Meng, Q., Bai, S., Chen, W., and Yu, H. (2021).

Design and optimization of a hip disarticulation prosthesis using the

remote center of motion mechanism. Technol. Health Care 29, 269–281.

doi: 10.3233/THC-192088

Lu, L., Wu, Q., Chen, X., Shao, Z., Chen, B., and Wu, H. (2019).

Development of a sEMG-based torque estimation control strategy for a soft

elbow exoskeleton. Rob. Auton. Syst. 111, 88–98. doi: 10.1016/j.robot.2018.

10.017

Luo, R. M., Sun, S. Q., Zhang, X. F., Tang, Z. C., and Wang, W. D. (2020).

A low-cost end-to-end sEMG-based gait sub-phase recognition system. IEEE

Trans. Neural Syst. Rehabil. Eng. 28, 267–276. doi: 10.1109/TNSRE.2019.295

0096

Moon, D.-H., Kim, D., and Hong, Y.-D. (2019). Intention

detection using physical sensors and electromyogram for a

single leg knee exoskeleton. Sensors 19, 4447. doi: 10.3390/s192

04447

Morbidoni, C., Cucchiarelli, A., Fioretti, S., and Di Nardo, F. (2019).

A deep learning approach to EMG-based classification of gait phases

during level ground walking. Electronics 8, 15. doi: 10.3390/electronics80

80894

Nardo, F. D., Morbidoni, C., Mascia, G., Verdini, F., and Fioretti, S. (2020). Intra-

subject approach for gait-event prediction by neural network interpretation

of EMG signals. Biomed. Eng. Online 19, 58. doi: 10.1186/s12938-020-00

803-1

Podobnik, B., Jiang, Z.-Q., Zhou, W.-X., and Stanley, H.

E. (2011). Statistical tests for power-law cross-correlated

processes. Phys. Rev. E 84, 066118. doi: 10.1103/PhysRevE.84.

066118

Podobnik, B., and Stanley, H. E. (2008). Detrended cross-correlation analysis: a

new method for analyzing two nonstationary time series. Phys. Rev. Lett. 100,

084102. doi: 10.1103/PhysRevLett.100.084102

Prass, T. S., and Pumi, G. (2021). On the behavior of the DFA and DCCA in trend-

stationary processes. J. Multivar. Anal. 182, 104703. doi: 10.1016/j.jmva.2020.

104703

Ryu, J.-K., Chong, N. Y., You, B. J., and Christensen, H. (2009). “Adaptive CPG

based coordinated control of healthy and robotic lower limb movements,” in

RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human

Interactive Communication (Toyama: IEEE).

Su, B., Smith, C., and Farewik, E. G. (2020). Gait phase recognition using deep

convolutional neural network with inertial measurement units. Biosensors 10,

109. doi: 10.3390/bios10090109

Taborri, J., Palermo, E., Rossi, S., and Cappa, P. (2016). Gait partitioning

methods: a systematic review. Sensors 16, 66. doi: 10.3390/s160

10066

Tanikawa, T., Masuda, Y., and Ishikawa, M. (2021). A reciprocal excitatory

reflex between extensors reproduces the prolongation of stance phase in

walking cats: Analysis on a robotic platform. Front. Neurorobot. 15, 636864.

doi: 10.3389/fnbot.2021.636864

Tucker, M. R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., et al.

(2015). Control strategies for active lower extremity prosthetics and orthotics:

a review. J. Neuroeng. Rehabil. 12, 1. doi: 10.1186/1743-0003-12-1

Vos, E. J., Harlaar, J., and van Ingen Schenau, G. J. (1991). Electromechanical

delay during knee extensor contractions.Med. Sci. Sports Exerc. 23, 1187–1193.

doi: 10.1249/00005768-199110000-00013

Wang, J., and Zhao, D.-Q. (2012). Detrended cross-correlation

analysis of electroencephalogram. Chin. Phys. B 21, 028703.

doi: 10.1088/1674-1056/21/2/028703

Wang, W. J., Li, J., Li, W. D., and Sun, L. N. (2013). An echo-based gait phase

determination method of lower limb prosthesis. Adv. Mat. Res. 706–708,

629–634. doi: 10.4028/www.scientific.net/AMR.706-708.629

Xiong, D., Zhang, D., Zhao, X., and Zhao, Y. (2021). Deep learning for EMG-based

human-machine interaction: a review. IEEE/CAA J. Autom. Sin. 8, 512–533.

doi: 10.1109/JAS.2021.1003865

Yang, J., Jin, D., Ji, L., Wang, R., Zhang, J., Fang, X., et al. (2007). The

reaction strategy of lower extremity muscles when slips occur to individuals

Frontiers in Neurorobotics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 791169

https://doi.org/10.1016/j.robot.2020.103663
https://doi.org/10.1186/s12984-019-0508-x
https://doi.org/10.1152/jn.00130.2017
https://doi.org/10.1007/BF00431022
https://doi.org/10.3390/s18082522
https://doi.org/10.1088/1748-3190/aada54
https://doi.org/10.1109/TBME.2003.813539
https://doi.org/10.1109/TNSRE.2014.2305111
https://doi.org/10.1088/1741-2552/ac1176
https://doi.org/10.1109/TBME.2019.2912466
https://doi.org/10.1016/0893-6080(89)90003-8
https://doi.org/10.1109/TMECH.2019.2928892
https://doi.org/10.1109/JSEN.2019.2944653
https://doi.org/10.1016/S1050-6411(00)00027-4
https://doi.org/10.3389/frobt.2018.00078
https://doi.org/10.1109/MSP.2012.2203480
https://doi.org/10.3233/THC-192088
https://doi.org/10.1016/j.robot.2018.10.017
https://doi.org/10.1109/TNSRE.2019.2950096
https://doi.org/10.3390/s19204447
https://doi.org/10.3390/electronics8080894
https://doi.org/10.1186/s12938-020-00803-1
https://doi.org/10.1103/PhysRevE.84.066118
https://doi.org/10.1103/PhysRevLett.100.084102
https://doi.org/10.1016/j.jmva.2020.104703
https://doi.org/10.3390/bios10090109
https://doi.org/10.3390/s16010066
https://doi.org/10.3389/fnbot.2021.636864
https://doi.org/10.1186/1743-0003-12-1
https://doi.org/10.1249/00005768-199110000-00013
https://doi.org/10.1088/1674-1056/21/2/028703
https://doi.org/10.4028/www.scientific.net/AMR.706-708.629
https://doi.org/10.1109/JAS.2021.1003865
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Chen et al. Bio-Inspired Gait Phase Recognition

with trans-femoral amputation. J. Electromyogr. Kinesiol. 17, 228–240.

doi: 10.1016/j.jelekin.2006.01.013

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those

of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Copyright © 2022 Chen, Li, Su, Zhang and Yu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 791169

https://doi.org/10.1016/j.jelekin.2006.01.013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Chen et al. Bio-Inspired Gait Phase Recognition

APPENDIX

The math equations and symbols of the feature extractors are
listed as the following:

VAR (variance):

VAR =
1

N − 1

N∑

i=1

(
Xi − X̄

)2

STD (standard deviation):

STD =

√√√√ 1

N

N∑

i=1

(
Xi − X̄

)2

RMS (root mean square):

RMS =

√√√√ 1

N

N∑

i=1

(Xi)
2

MAV (mean absolute value):

MAV =
1

N

N∑

i=1

|Xi|

MAX (maximum):

MAX = maximum (Xi)where, i = 1, ...,N

WL (wavelength):

WL =

N−1∑

i=1

|Xi+1 − Xi|

WA (Willison amplitude):

WA =

N∑

i=1

f |Xi − Xi+1|

f (Xi) =

{
1& if X > thresholding
0& otherwise

SSC (slope sign change):

SSC =

N−1∑

i=2

f (Xi)

f (Xi) =





1, if {(Xi > Xi−1&Xi > Xi+1) | (Xi < Xi−1&Xi < Xi−1)}

& {(|Xi − Xi+1| ≥ T) | (|Xi − Xi−1| ≥ T)}

0, otherwise

iEMG (integrated EMG):

iEMG =

∫ t+N

t
|Xi|dt
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